Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(9): 22188-22210, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36282383

ABSTRACT

Mining waste that is rich in iron-, calcium- and magnesium-bearing minerals can be a potential feedstock for sequestering CO2 by mineral carbonation. This study highlights the utilization of iron ore mining waste in sequestering CO2 under low-reaction condition of a mineral carbonation process. Alkaline iron mining waste was used as feedstock for aqueous mineral carbonation and was subjected to mineralogical, chemical, and thermal analyses. A carbonation experiment was performed at ambient CO2 pressure, temperature of 80 °C at 1-h exposure time under the influence of pH (8-12) and particle size (< 38-75 µm). The mine waste contains Fe-oxides of magnetite and hematite, Ca-silicates of anorthite and wollastonite and Ca-Mg-silicates of diopside, which corresponds to 72.62% (Fe2O3), 5.82% (CaO), and 2.74% (MgO). Fe and Ca carbonation efficiencies were increased when particle size was reduced to < 38 µm and pH increased to 12. Multi-stage mineral transformation was observed from thermogravimetric analysis between temperature of 30 and 1000 °C. Derivative mass losses of carbonated products were assigned to four stages between 30-150 °C (dehydration), 150-350 °C (iron dehydroxylation), 350-700 °C (Fe carbonate decomposition), and 700-1000 °C (Ca carbonate decomposition). Peaks of mass losses were attributed to ferric iron reduction to magnetite between 662 and 670 °C, siderite decarbonization between 485 and 513 °C, aragonite decarbonization between 753 and 767 °C, and calcite decarbonization between 798 and 943 °C. A 48% higher carbonation rate was observed in carbonated products compared to raw sample. Production of carbonates was evidenced from XRD analysis showing the presence of siderite, aragonite, calcite, and traces of Fe carbonates, and about 33.13-49.81 g CO2/kg of waste has been sequestered from the process. Therefore, it has been shown that iron mining waste can be a feasible feedstock for mineral carbonation in view of waste restoration and CO2 emission reduction.


Subject(s)
Carbon Dioxide , Iron Compounds , Carbon Dioxide/chemistry , Ferrosoferric Oxide , Minerals/chemistry , Carbonates/chemistry , Silicates/chemistry , Calcium Carbonate/chemistry , Iron Compounds/chemistry , Iron , Carbon Sequestration
2.
Environ Sci Pollut Res Int ; 27(11): 12767-12780, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32008190

ABSTRACT

This study highlights the importance of mineralogical composition for potential carbon dioxide (CO2) capture and storage of mine waste materials. In particular, this study attempts to evaluate the role of mineral carbonation of sedimentary mine waste and their potential reutilization as supplementary cementitious material (SCM). Limestone and gold mine wastes were recovered from mine processing sites for their use as SCM in brick-making and for evaluation of potential carbon sequestration. Dominant minerals in the limestone mine waste were calcite and akermanite (calcium silicate) while the gold mine waste was dominated by illite (iron silicate) and chlorite-serpentine (magnesium silicate). Calcium oxide, CaO and silica, SiO2, were the highest composition in the limestone and gold mine waste, respectively, with maximum CO2 storage of between 7.17 and 61.37%. Greater potential for CO2 capture was observed for limestone mine waste as due to higher CaO content alongside magnesium oxide. Mineral carbonation of the limestone mine waste was accelerated at smaller particle size of < 38 µm and at pH 10 as reflected by the greater carbonation efficiency. Reutilization of limestone mine waste as SCM in brick-making exhibited greater compressive strength and lower water absorption compared to the bricks made of gold mine waste. The gold mine waste is characterized as having high pozzolanic behaviour, resulting in lower carbonation potential. Therefore, it has been noticeable that limestone mine waste is a suitable feedstock for mineral carbonation process and could be reutilized as supplementary cementitious material for cement-based product. This would be beneficial in light of environmental conservation of mine waste materials and in support of sustainable use of resources for engineering construction purposes.


Subject(s)
Carbon Sequestration , Silicon Dioxide , Carbon Dioxide , Carbonates , Industrial Waste/analysis , Minerals
SELECTION OF CITATIONS
SEARCH DETAIL
...